Haptic feedback enhances rhythmic motor control by reducing variability, not improving convergence rate.

نویسندگان

  • M Mert Ankarali
  • H Tutkun Sen
  • Avik De
  • Allison M Okamura
  • Noah J Cowan
چکیده

Stability and performance during rhythmic motor behaviors such as locomotion are critical for survival across taxa: falling down would bode well for neither cheetah nor gazelle. Little is known about how haptic feedback, particularly during discrete events such as the heel-strike event during walking, enhances rhythmic behavior. To determine the effect of haptic cues on rhythmic motor performance, we investigated a virtual paddle juggling behavior, analogous to bouncing a table tennis ball on a paddle. Here, we show that a force impulse to the hand at the moment of ball-paddle collision categorically improves performance over visual feedback alone, not by regulating the rate of convergence to steady state (e.g., via higher gain feedback or modifying the steady-state hand motion), but rather by reducing cycle-to-cycle variability. This suggests that the timing and state cues afforded by haptic feedback decrease the nervous system's uncertainty of the state of the ball to enable more accurate control but that the feedback gain itself is unaltered. This decrease in variability leads to a substantial increase in the mean first passage time, a measure of the long-term metastability of a stochastic dynamical system. Rhythmic tasks such as locomotion and juggling involve intermittent contact with the environment (i.e., hybrid transitions), and the timing of such transitions is generally easy to sense via haptic feedback. This timing information may improve metastability, equating to less frequent falls or other failures depending on the task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhances Rhythmic Motor Control By Reducing Variability , Not Convergence Rate

Title: Haptic Feedback Enhances Rhythmic Motor Control By Reducing Variability, Not Convergence Rate 1 Abbreviated Title for the Running Head: Haptic Feedback Reduces Rhythmic Variability 2 Authors: M. Mert Ankaralı1•, H. Tutkun Şen2, Avik De3, Allison M. Okamura4, Noah J. Cowan1. 3 1Dept. of Mechanical Eng., Johns Hopkins Univ., Baltimore, MD, USA, 21218 4 2Dept. of Computer Science, Johns Hop...

متن کامل

Variability , Symmetry , and Dynamics in Human

How humans and other animals control rhythmic behaviors, and locomotion in particular, is one of the grand challenges of neuroscience and biomechanics. And yet remarkably few studies address the fundamental control-systems modeling of locomotor control. This thesis attempts to address several pieces of this grand challenge through the development of experimental, theoretical, and computational ...

متن کامل

Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. M...

متن کامل

Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance

This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-t...

متن کامل

Nonlinear Guidance Law with Finite Time Convergence Considering Control Loop Dynamics

In this paper a new nonlinear guidance law with finite time convergence is proposed. The second order integrated guidance and control loop is formulated considering a first order control loop dynamics. By transforming the state equations to the normal form, a finite time stabilizer feedback linearization technique is proposed to guarantee the finite time convergence of the system states to zero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 111 6  شماره 

صفحات  -

تاریخ انتشار 2014